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Abstract: A method is presented for generating shaped command inputs which
significantly reduce or eliminate endpoint vibration. Desired system inputs are
altered so that the system completes the requested move without residual vibration.
A short move time penalty is incurred (on the order of one period of the first mode of
vibration). The preshaping technique is robust under system parameter uncertainty
and may be applied to both open and closed loop systems. The Draper Laboratory's
Space Shuttle Remote Manipulator System simulator (DRS) is used to evaluate the
method. Reults show a factor of 25 reduction in endpoint residual vibration for
typical moves of the DRS.
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1 Introduction

Input command shaping and closed-loop feedback for vibration control are two
distinct approaches toward vibration reduction of flexible systems. Many researchers
have examined closed-loop feedback techniques for reducing endpoint vibration, for
example [9][26][19]. These techniques differ from input shaping in that they use
measurements of the system's states to reduce vibration. Command shaping involves
altering the shape of either actuator commands or setpoints so that system oscillations
are reduced [161 [23]. This technique is often dismissed because it is mistakenly
considered to be useful only for open loop systems. However, if the input shaping
accounts for the dynamic characteristics of the closed loop plant, then shaped input
commands can be given to the closed loop plant as well. Thus, any of the preshaping
techniques may be readily used as a closed loop technique [16] [23].

The earliest form of command preshaping was the use of high-speed cam profiles
as motion templates. These input shapes were generated so as to be continuous
throughout one cycle (ie. the cycloidal cam profile). Their smoothness (continuous
derivatives) reduces unwanted dynamics by not putting high frequency inputs into
the system [20]; however, these profiles have limited success.

Another early form of setpoint shaping was the use of posicast control by O.J.M.

Smith [23]. This technique involkes breaking a step of a certain magnitude into
two smaller steps, one of which is delayed in time. This results in a response with
a reduced settling time. In effect, superposition of the responses leads to vibration
cancellation. However, this is not generally used because of problems with robustness.
The system that is to be commanded must have only one resonance, be known exactly,
and be very linear for this technique to work.

Optimal control approaches have been used to generate input profiles for com-
manding vibratory systems. .Junkins, Turner, Chun, and Juang have made con-
siderable progress toward practical solutions of the optimal control formulation for
flexible systems[10][11][5]. Typically, a penalty function is selected (for example in-
tegral squared error plus some control penalty). The resulting "optimal" trajectory
is obtained in the form of the solution to the system equations (a model). This input
is then given to the system.

Farrenkopf [61 and Swigert [24] demonstrated that velocity and torque shaping can
be 1mp!emcntcd on systems which modally decompose into second order harmonic

oscillators. They showed that inputs in the form of the solutions for the decnpled

rn, itm cail ie added so a not to excite vibration while moving the system. Their

technique solves for parameters in a template function, therefore, inputs are limited to
the form of t he template. These parameters that define the control input are obtained

by minirnizinlg some cost CUction using an optimal formulation. The drawback of
this approach is that the inpiit are diffic lt to compute and they must be calculated

For ea,:h move uf the !oem.



(;,pta S], and Junkins and Turner [10] also included some frequency shaping
tcrms in the optimal formulation. The derivative of the control input is included in
the penalty £tnction so that, as with cam profiles, the resulting functions are smooth.

Several papers also address the closed loop "optimal" feedback gains which are
used in conjunction with the "optimal" open-loop input. [10][11],5]

There are four drawbacks to these "optimal" approaches. First, computation is
difficult. Each motion of the system requires recomputation of the control. Though
the papers cited above have made major advances toward simplifying this step, it
continues to be extremely difticult or impossible to solve for complex systems.

Second, the penalty function does not explicitly include a direct measure of the
unwanted dynamics (often vibration). Tracking error is used in the penalty function,
therefore, all forms of error are essentially lumped together - the issue of unwanted
dynamics is not addressed directly. One side effect is that these approaches penalize
residual vibration but allow the system to vibrate during the move. This leads to a
lack of robustness under system uncertainties. In addition, vibration during a move
!na% be undesirable.

Third, the solutions are limited to the domain of continuous functions. This is
;ill arbitrary constraint which enables the solution of the problem. Fourth, the value
of optimal input strategies depend on move time. Different moves will have different
vibration excitation levels.

Another technique is based on the concept of the computed torque approach. The
sVsteII is first modeled in detail. This model is then inverted - the desired output
trajectory is specified and the required input needed to generate that trajectory is
computed. For linear systems, this might involve dividing the frequency spectrum of
the trajectory by the transfer function of the system, thus obtaining the frequency
.i)ectrurm of the input. For nonlinear systems this technique involves inverting the
eqiuations for the model. [1]

Techniques that invert the plant have four problems. First., a trajectory must be
,,c-ted. If the trajectory is impossible to follow, the plant inversion fails to give a
lsable result. Often a poor trajectory is selected to guarantee that the system can
folov it. thus defeating the purpose of the input [3]. Second. a detailcd model of the

-v.tem is required. This is a difficult step for machines which are not simple. Third,
the plant inversion is not robust to variations in the system parameters because no
rr)I)utness criterion has been included in the calculation. Fourth, this technique
:_mult in large move time penalties becausc the plant inversion process results in an

, - .usal input (an irput which exists before zero time). In order to use this input, it
mu1st be shifted in time thus increasing the move time.

\nother approach to command shaping is the work of Meckl and Seering [12]
!:3 '11 ' 151 r16i117. They investigated several forms of feedforward command shap-

i I L, Ie :)proaCh t e0 (Xa tfitie'l is the construction of inpul funcions from either
.iri f iiIIns. lhiTs a)proac iIvol,'', .. l '-i ,up harlim,,11,



of one of these template functions. If all harmonics were included, the input would
be a time optimal rectangular (bang-bang) input function. The harmonics that have
significant spectral energy at the natural frequencies of the system are discarded. The
resulting input which is given to the system approaches the rectangular shape, but
does not significantly excite the resonances. This technique essentially constructs
an input function prior to a move. The approach presented in this paper does not
require continuous functions and the processing can be performed in real-time.

Aspinwall [2] proposed a similar approach which involves creating input functions
by adding harmonics of a sine series. The coefficients of the series are chosen to
minimize the frequency content of the input over a band of frequencies. Unlike
Meckl, the coefficients were not selected to make the sine series approach a rectangular
function, therefore, a large time penalty was incurred.

Wang, Hsia, and Wiederrich [25] proposed yet another approach for creating a
command input that moves a flexible system while reducing the residual vibrations.
They modeled the system in software and designed a PID controller for the plant that
gave a desired response. They then examined the actual input that the controller gave
to the software plant and used this for the real system. Next, they refined this input
(the reference) with an iteration scheme that adds the error signal to the reference
in order to get better tracking of the trajectory. This technique requires accurate
modeling of the system and is not robust to parameter uncertainty. In addition,
the method assumes that a good response can be achieved with a PID controller, In
fact, systems with flexibility can not, in general, be given sufficient damping and a
reasonable response time by adding a PID controller.

Often, a notch filter is proposed for input signal conditioning. This approach gives
poor results for several reasons. First, a causal (real time) filter distorts the phase
of the resulting signal. This effect is aggravated by lengthening the filter sequence
of digital filters or by increasing the order of analog or recursive filters. Therefore,
efforts to improve the frequency characteristics of a filter result in increased phase
distortion. Also, penalties, such as filter ringing or long move times often result.

Singer and Seering [21] investigated an alternative approach of shaping a time op-
timal input by acausally filtering out the frequency components near the resonances.
This has an advantage over notch filtering in that phase distortion and ringing no
longer pose a problem. The drawbacks of this approach [211 are the tradeoffs that
must be made between fidelity in frequency and reduction of the move time.

2 Shaping Inputs

Most researchers have examined the transient vibration of manipulators in terms
of frequency content of the system inputs and outputs. This approach inherently
assumes that the system inputs are not actually transient, but are one cycle of a



repeating waveform. The approach taken in this paper is fourfold: first, the transient

residual vibration amplitude of a system will be directly expressed as a function of
its transient input. Second, the input will be specified so that the system's natural

tendency to vibrate is used to cancel residual vibration. Third, the input will be

modified to include robustness t, uncertainties. Fourth, the case of arbitrary system
inputs will be examined.

2.1 Generating a Vibration-Free Output

The derivation of the new technique will be based on linear system theory. The
results obtained will then be demonstrated on a more complicated system. The
first step toward generating a system input which results in a vibration-free system

output is to specify the system response to an impulse input. An uncoupled, linear,
vibratory system of any order can be specified as a cascaded set of second-order poles

with the decaying sinusoidal response [4]:

Y = [A ":o_____ -(W0(t-t0)1 - 2(

t) - s e sin V1.0 -O t - to)

where .4 is the amplitude of the impulse, -0 is the undamped natural frequency of

the plant, is the damping ratio of the plant, t is time, and to is the time of the

impulse input. The impulse is usually a torque or velocity command to an actuator.
Equation 1 specifies the acceleration or velocity response, y(t), at some point of

interest in the system.
In this section, only one mode is assumed (the general case is treated in sec-

tion 2.3). Figure 1 demonstrates that two impulse responses can be superposed so
that the system moves forward without vibration after the input has ended. In this

case, the input consists of two impulses; the "end" or duration of the input is the
tine of the last (second) impulse. The same result can be obtained mathematically

Iv adding two impulse responses [each described by (1)], and expressing the result
for all times greater than the duration of the input. Using the trigonometric relation

(from [T1):

B, sin(at + 01) + B 2 sin(at + 02) = Aamp sin(at + t.9) (2)

where

Aarnp = /(B cos P + B2cos6 2)2 + (B sin 1 + B2 sin0 2)2

tan (B1  Cos 1 ± B2 Cos 02
B, sin 01 ±+B2 sin 62



Position
First Impulse

Seond Impulse Response to First Impulse
_- - Response to Second Impulse

\ /

Time
System Response to Each Input

Position
First Impulse

Second Impulse Combined Response

Time
System Response to Both Inputs

Figure 1: The two impulse responses shown add to form an output that shows a net
positive motion with no vibration after the input has ended at the time of the second
impulse.
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The amplitude of vibration for a multi-impulse input is given by:

Aamp = 1 1: BjCos J + E=B. sin (3)

0, = 0  -

The B, are the coefficients of the sine term in (1) for each of the N impulse inputs,
and the t, are the times at which the impulses occur. Elimination of vibration after
the input has ended requires that the expression for Aamp equal zero at the time at
which the input ends, tN. This is true if both squared terms in 3 are independently
zero, yielding:

B, cos $1 + B2 cos2 + ""+ BN cos ON = 0 (4)

B, sin 6 + B2 sin0 2 + + BNsinN = 0 , (5)

with
B) TJ' e-(ot _j

[(1 - 2)

where .4, is the amplitude of the Nth impulse, t. is the time of the Nth impulse.
and tNv is the time at which the sequence ends (time of the last impulse). Equa-

tions 4 and 5 can be simplified further yeilding:

E Aje-C-(t-?) sin (tjW 1 - -2) = 0
./=1

NA,e- ' cos (t l - 2) = 0 (6)

If the input is chosen so that there are N impulses, N terms must be included in
equation 6.

For the two-impulse case, only the first two terms exist in (6). By selecting 0 for
the time of the first impulse (tj), and 1 for its amplitude (A 1 ), two equations (6) with
two unknowns (A 2 and t2) result. A 2 scales linearly for other values of A,. The
solution of these two equations produces the input sequence shown in figure 2. The
detailed derivation of this result is long and can be found in Singer [22]

2.2 Robustness

2.2.1 Robustness to Errors in Natural Frequency

The two-impuLe input, however, cancels vibration only if the system natural
.1 ((jlPty &alld damping ratio are exact. In order to quantify the rc.idual vilbrai,t1



level for a system, a vibration-error expression must be defined, here as the maximum
amplitude of the residual vibration during a move as a percentage of the amplitude of
the rigid body motion. This definition is expressed mathematically with equation :3
divided by the sum of all the A,. Figure 3 shows a plot of the vibration error as
a function of the system's actual natural frequency. The input was designed for a
system with a natural frequency of 'o. Acceptable response is defined as less than
.5% residual vibration [181. Figure 3 shows that the two-impulse input is robust for a
frequency variation of less than - ±5%.

In order to increase the robustness of the input under variations of the system
natural frequency, a new constraint may be added. The derivatives of (6) with respect
to frequency (0o) can be set equa' to zero - the mathematical equivalent of setting
a goal of small changes in vibration error for changes in natural frequency. The two
equations for these derivatives,

E Atie""t, SIn ( t) L' - 2 0
2-1

.. t j.. - ( c s t j_' V  1 0,,'
'=1/

are added to the svstcm; therefore, two more unknowns must be added by increasing
the input from two to three impulses (added unknowns: 43 and t3 ). The details of
the derivation of this result are given in Singer [22]. The corresponding input and
vibration error curves that result from solving the four equations are shown in figures

4 and 5. In this case, the input is robust for system frequency variations of ; ±20%.
The process of adding robustness can be further extended to include the second

derivatives of (6) with respect to -0. the general form of the qth derivative of
equation 6 with respect to ,' is given by:

1A,(t, )'e, 4 - si1n t 1 0

N

E '1,,)~~4 f t.7 C Co t ~ 0()

Setting the second derivatives (equiation S when q = 2) to 0 requires that the
vibration error be flat around the intended natural frequency. Two more constraint
equations are added, therefore, the iiMpulse sequence is increased by one to a total
of four impulses. The corresponding input and vibration error curves are shown in
figures 6 and 7. In this case, the input is robust for system frequency variations of

3 -30% + 40%.
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Figure 2: Two-impulse input - designed to have a vibration-error expression which
is zero at the expected system natural frequency, wo. C is the expected damping
ratio. Note that K happens to be the expression for the step response overshoot of
a 2-pole linear system with no numerator dynamics, and AT is the time of the first
overshoot.
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Figure 3: Vibration error vs. system natural frequency for three systems with differ-

ent values of damping ratio excited by the two-impulse sequence in figure 2.

2.2.2 Robustness to Errors in Damping

In order for these system inputs to be insensitive to system parameter variation,

uncertainty in damping ratio must also be considered. As with respect to natural
frequency in the previous section, the derivative of the amplitude of vibration with
respect to damping ratio (() can be computed. It can be shown [221 that the same
expressions that guarantee zero derivatives with respect to frequency also guarantee
zero derivatives with respect to damping ratio. Therefore, robustness to errors in
damping has already been achieved by the addition of robustness to errors in fre-

quency. Figure 8 shows the vibration-error expression for the same three sequences
as were generated in 2.2.1. Note that extremely large variations in damping are
tolerated.

2.3 Including Higher Modes

The previous sections have assumed only one vibrational mode present in the
system. However, the impulse sequence can easily be generalized to handle higher

modes. If an impulse or pulse sequence is designed for each of the first two modes
of a system independently, they can be convolved to form a sequence which moves a
two-mode systpm without vibration. Figure 9 demonstrates this on two sequences.

T ,_ length of the resulting ;equence is th sum of the lengths of the individual
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Figure 4: Three-impulse input - designed to have a vibration-error expression which
is both zero and tangent at the expected system natural frequency, wo. C is the
expected damping ratio.
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sequences. The sum, however, is an upper bound on the length of the two-mode
sequence which can be generated directly by simultaneously solving together the
same equations that generated the two individual sequences. For example, if the
four equations used to generate the sequence in figure 4 were repeated for a different
frequency, a system of eight equations would result and could be solved for four
unknown impulse amplitudes and times (plus the first, arbitrary impulse), yielding
a five-impulse sequence. The resulting sequence has four fewer impulses than the
result of convolving the two independent sequences, and is always shorter in time.
An arbitrary number of such sequences can be combined (either by convolution or
by direct solution) to generate an input that will not cause vibration in any of the
modes that have been included in the derivation.

2.4 Using Impulse Input Sequences to Shape Inputs

Sections 2.2 and 2.3 have presented a method for obtaining a system impulse
input sequence which simultaneously eliminates vibration at the natural frequencies
of interest and includes robustness to system variability. The impulse sequences
shown in figures 2, 4, and 6 are the shortest sequences constructed of only positive
impulses which satisfy the constraints in equation 6 and the appropriate derivative
constraints. In this sense the sequences are "time-optimal" - no shorter input can
be constructed that simultaneously meets the same constraints.

This section presents a method for using the sequences derived above to generate
arbitrary inputs with the same vibration-reducing properties. Once the appropriate
impulse sequence has been developed, it represents the shortest input that meets the
desired design criteria. Therefore, if the system is commanded to make an extremely
short move, the best that can be commanded in reality is the multiple-impulse se-
quence that was generated for the system. Just as the single impulse is the building
block from which any arbitrary function can be formed, this impulse sequence can be
used as a building block for arbitrary vibration-reducing inputs. The vibration re-
duction can be accomplished by convolving any arbitrary desired input to the system
together with the impulse sequence in order to yield the shortest actual system input
that makes the same motion without vibration. The sequence, therefore, becomes a
prefilter for any input to be given to the system. The time penalty resulting from
prefiltering the input equals the length of the impulse sequence (on the order of one
cycle of vibration for the sequences shown in 2.2). Figure 10 shows the convolution
of an input (for example, the signal from a joystick in a teleoperated system) with a
non-robust, two-impulse sequence.

The impulse sequences from 2.2 have been normalized to sum to one. This nor-
malization guarantees that the convolved motor input never exceeds the maximum
value of the commanded input. If the commanded input is completely known in ad-
vance for a particular move, the convolved motor input can be rescaled so that. the

!1



nma'ximum value of the function is the actuator limit of the system.
The new technique consists of selecting an impulse sequence that has the desired

robustness for the system that is to be controlled. The sequence is designed for the
natural frequency and damping ratio of the closed-loop system. This input sequence
is then convolved with any inputs that are sent to the closed-loop plant. Figure 11
shows a schematic diagram of the implementation of the new technique. Because the
input shaping is for the closed-loop system, any controller may be used.

It is important to note that convolution of a physically-realizable requested input
and an impulse sequence always results in a physically-realizable shaped command
input to the system. The convolution process merely superposes time-shifted copies
of the original command. Impulses are never sent to the system.

For historical reference, the result of convolving a non-robust two-impulse se-
(,nce with a step input yields the Posicast input developed by O.J.M. Smith in
1).58 '23. The robustness plot of figure 3 demonstrates why Posicast is not gener-

allv used. For small changes or uncertianties in the system natural frequency, a
Considerable amount of residual vibration is incurred.

2.5 Application to Nonlinear Systems

No general statement can be made regarding the application of the new technique
'o nonlinear systems since each nonlinearity poses unique problems. Nonlinearities
that tend to appear as shifts in natural frequency do not seem to interfere with the
vibration-reducing effects of the new shaping technique because of the robustness

to frequency uncertainty that was included in the derivation. Many simulations of
geometrically nonliear systems have been performed. An example of such a simulation
is provided below. As long as the system is varying slowly, the new shaping technique

1, ;ds to work (at least on the nonliear, manipulator systems that were considered).
.\ more detailed discussion of nonlinear systems is presented in Singer [22].

2.6 Results

The shaped commands are tested on a computer model of the Space Shuttl,
Hemote Manipulator System (RMS). The computer simulation was developed by
Draper Laboratories for use by NASA to verify and to test payload operations. The

Draper shuttle model (DRS) includes many of the nonlinear complicating features
Of the hardware Shuttle manipulator such as stiction/friction in the joints; nonlinear
gearbox stiffness; asynchronous communication timing; joint freeplay; saturation; dig-

itization effects; and the nonlinear spacial frequency shifts of the three-dimensional

tMS. The simulation was verified with actual space-shuttle flight data. Excellent

agreement was obtained both for steady-state and for transient behavior.
Figure 12 shows the response of the DRS to a 4 second pulse velocity command

12



from the astronaut operator and response to the same command shaped by the three-
impulse sequence described above. The residual vibration for this move is reduced by
(a factor of 25for the unloaded shuttle arm. Comparable results were obtained for
a variety of moves tested. The fact that this simulation model is highly nonlinear
demonstrates that this method can work even in the presence of certain system
nonlinearities.

3 Conclusion
The use of shaped inputs for commanding computer-controlled machines shows

that significant vibration reduction can be achieved. The cost in extended move time
is small (on the order of one cycle of vibration), especially when compared to the time
saved in waiting for settling of the machine's vibrations. A straightforward design
approach for implementing this preshaping technique has been presented along with
some results from Draper Laboratory's Space Shuttle manipulator model.
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Figure 5: Vibration error vs. system natural frequency for three systems with differ-
ent values of damping ratio excited by the three-impulse sequence in figure 4.

17



3K
D 3K 2

1 D

K3

0 AT 2AT 3AT Time

K =e-

AT = 7"

D = 1+3K+3K2 +K 3

Figure 6: Four-impulse input - designed to have a vibration-error expression which
is zero, tangent, and flat at the expected system natural frequency, wo. C is the
expected damping ratio.
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Figure 7: Vibration error vs. system natural frequency for three systems with differ-
ent values of damping ratio excited by the four-impulse sequence in figure 6.
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Figure 8: Vibration error vs. damping ratio for the two-, three-, and four- impulse
inputs presented in section 2.2.1 calculated for a system with a damping ratio of .05.
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Figure 9: Vibration reduction for several modes. An example of convolving two
three-impulse sequences together to form a single sequence that reduces vibration in
two separate modes.
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Figure 10: Convolution of a command in (a) with a Two-Impulse Sequence shown in
(b) yields the system input shown in (c).
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Figure 11: Schematic diagram for implementation of the new technique
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Figure 12: Comparison between the response of the DRS using the original RMS con-
troller (shown as dotted) and the response generated by shaping the same command
with a three-impulse sequence (shown as solid). The reduced vibration of the solid
curve over the dotted curve is a direct result of preshaping of the input command.
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